Micron Tells Story of Building DRAM Cube
Rick Merritt, EETimes
8/13/2013 08:03 PM EDT
SAN JOSE, Calif. — Micron's Hybrid Memory Cube -- a 4 GByte stack of DRAM die on a 160 GByte/second interface now sampling to a few close partners -- almost didn't happen. The first prototype failed to make connections between the DRAM stack and a controller inside the package, forcing an all-hands-on-deck effort to save the project.
Two top engineering managers leading the program told some of the story behind the Cube in an interview with EE Times. They also shared a few of their goals for the next-generation chip now in the works -- an 8 GByte stack transferring data at up to 320 GBytes/second with even greater power efficiency that the current samples.
The Cube got its start in early 2006 when the industry was buzzing with talk both about multicore processors and 3D chip stacks using through silicon vias (TSVs).
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related News
- Micron Fab Incident Disrupts DRAM Supply
- Synopsys Delivers Next-Generation Verification IP for Micron's Hybrid Memory Cube Architecture
- Micron Technology Ships First Samples of Hybrid Memory Cube
- Altera and Micron Lead Industry with FPGA and Hybrid Memory Cube Interoperability
- Micron Announces Its First Fully Functional DDR4 DRAM Module
Breaking News
- RISC-V International Promotes Andrea Gallo to CEO
- See the 2025 Best Edge AI Processor IP at the Embedded Vision Summit
- Andes Technology Showcases RISC-V AI Leadership at RISC-V Summit Europe 2025
- RISC-V Royalty-Driven Revenue to Exceed License Revenue by 2027
- Keysom Unveils Keysom Core Explorer V1.0
Most Popular
- RISC-V International Promotes Andrea Gallo to CEO
- See the 2025 Best Edge AI Processor IP at the Embedded Vision Summit
- Andes Technology Showcases RISC-V AI Leadership at RISC-V Summit Europe 2025
- Ceva, Inc. Announces First Quarter 2025 Financial Results
- Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems to Transform AI-Driven Silicon, Systems and Drug Design